Dimensionally Nilpotent Jordan Algebras
نویسندگان
چکیده
منابع مشابه
NILPOTENT GRAPHS OF MATRIX ALGEBRAS
Let $R$ be a ring with unity. The undirected nilpotent graph of $R$, denoted by $Gamma_N(R)$, is a graph with vertex set ~$Z_N(R)^* = {0neq x in R | xy in N(R) for some y in R^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in N(R)$, or equivalently, $yx in N(R)$, where $N(R)$ denoted the nilpotent elements of $R$. Recently, it has been proved that if $R$ is a left A...
متن کاملDifferential Gerstenhaber Algebras Associated to Nilpotent Algebras
This article provides a complete description of the differential Gerstenhaber algebras of all nilpotent complex structures on any real six-dimensional nilpotent algebra. As an application, we classify all pseudo-Kählerian complex structures on six-dimensional nilpotent algebras such that the differential Gerstenhaber algebra of its complex structure is quasi-isomorphic to that of its symplectic...
متن کاملSome properties of nilpotent Lie algebras
In this article, using the definitions of central series and nilpotency in the Lie algebras, we give some results similar to the works of Hulse and Lennox in 1976 and Hekster in 1986. Finally we will prove that every non trivial ideal of a nilpotent Lie algebra nontrivially intersects with the centre of Lie algebra, which is similar to Philip Hall's result in the group theory.
متن کاملQuantum cluster algebras and quantum nilpotent algebras.
A major direction in the theory of cluster algebras is to construct (quantum) cluster algebra structures on the (quantized) coordinate rings of various families of varieties arising in Lie theory. We prove that all algebras in a very large axiomatically defined class of noncommutative algebras possess canonical quantum cluster algebra structures. Furthermore, they coincide with the correspondin...
متن کاملJordan forms for mutually annihilating nilpotent pairs
We consider pairs of n × n commuting matrices over an algebraically closed field F . For n, a, b (all at least 2) let V(n, a, b) be the variety of all pairs (A,B) of commuting nilpotent matrices such that AB = BA = A = B = 0. In [14] Schröer classified the irreducible components of V(n, a, b) and thus answered a question stated by Kraft [9, p. 201] (see also [3] and [10]). If μ = (μ1, μ2, . . ....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1992
ISSN: 0002-9939
DOI: 10.2307/2159472